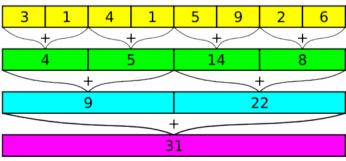


Massively Parallel Algorithms Parallel Prefix Sum And Its Applications



G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

- Remember the *reduction* operation
 - Extremely important/frequent operation → Google's MapReduce
- Definition prefix sum:

Given an input sequence

$$A = (a_0, a_1, a_2, \ldots, a_{n-1})$$
,

the (inclusive) prefix sum of this sequence is the output sequence

$$\hat{A}=(a_0,a_1\oplus a_0,a_2\oplus a_1\oplus a_0,\ldots,a_{n-1}\oplus\cdots\oplus a_0)$$

where \oplus is an arbitrary binary associative operator.

The exclusive prefix sum is

$$\hat{A}' = (\iota, a_0, a_1 \oplus a_0, \ldots, a_{n-2} \oplus \cdots \oplus a_0)$$

where ι is the identity/zero element, e.g., 0 for the + operator.

The prefix sum operation is sometimes also called a scan (operation)

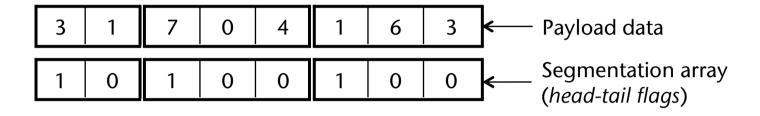
Example:

- Input: A = (3 17 04 163)
- Inclusive prefix sum: $\hat{A} = (3 \ 4 \ 11 \ 11 \ 15 \ 16 \ 22 \ 25)$
- Exclusive prefix sum: $\hat{A}' = (0\ 3\ 4\ 11\ 11\ 15\ 16\ 22)$
- Further variant: backward scan
- Applications: many!
 - For example: polynomial evaluation (Horner's scheme)
 - In general: "What came before/after me?"
 - "Where do I start writing my data?"
- The prefix sum problem appears to be "inherently sequential"

 Actually, prefix-sum (a.k.a. scan) was considered such an important operation, that it was implemented as a primitive in the CM-2 Connection Machine (of Thinking Machines Corp.)

Variation: Segmented Scan

Input: segments of numbers in one large vector



- Task: scan (prefix-sum) within each segment
- Output: prefix-sums for each segment, in one vector

0	3	0	7	7	0	1	7
---	---	---	---	---	---	---	---

- Forms the basis for a wide variety of algorithms:
 - E.g., Quicksort, Sparse Matrix-Vector Multiply, Convex Hull
- Won't go into details here

Application from "Everyday" Life

- Given:
 - A 100-inch sandwich
 - 10 persons
 - We know how many inches each person wants: [3 5 2 7 28 4 3 0 8 1]
- Task: cut the sandwich quickly
- Sequential method: one cut after another
 (3 inches first, 5 inches next, ...)
- Parallel method:
 - Compute prefix sum
 - Cut in parallel
 - How quickly can we compute the prefix sum??

Importance of the Scan Operation

Assume the scan operation is a primitive that has unit time costs, then the following algorithms have the following complexities:

	Model			
Algorithm	EREW	CRCW	Scan	
Graph Algorithms				
(n vertices, m edges, m processors)				
Minimum Spanning Tree	$lg^2 n$	$\lg n$	$\lg n$	
Connected Components	$ \lg^2 n \\ n^2 \lg n $	$\lg n$	lg n	
Maximum Flow	$n^2 \lg n$	$n^2 \lg n$	n^2	
Maximal Independent Set	$\lg^2 n$	$\lg^2 n$	lg n	
Biconnected Components	$\lg^2 n$	lg n	$\lg n$	
Sorting and Merging				
(n keys, n processors)				
Sorting	$\lg n$	$\lg n$	$\lg n$	
Merging	$\lg n$	lg lg n	lg lg n	
Computational Geometry				
(n points, n processors)				
Convex Hull	$lg^2 n$	$\lg n$	$\lg n$	
Building a K-D Tree	$\lg^2 n$	$\lg^2 n$	lg n	
Closest Pair in the Plane	$\lg^2 n$	lgnlglgn	lg n	
Line of Sight	$\lg n$	$\lg n$	1	
Matrix Manipulation				
$(n \times n \text{ matrix}, n^2 \text{ processors})$				
Matrix × Matrix	n	n	n	
Vector × Matrix	$\lg n$	$\lg n$	1	
Matrix Inversion	$n \lg n$	$n \lg n$	n	

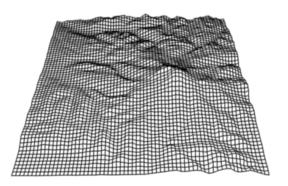
EREW =
exclusive-read,
exclusive-write PRAM
CRCW =
concurrent-read,
concurrent-write PRAM
Scan =
EREW with scan as
unit-cost primitive

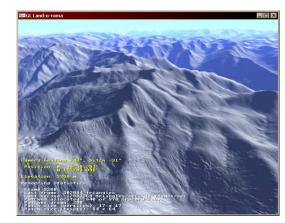
Guy E. Blelloch: Vector Models for Data-Parallel Computing

Example: Line-of-Sight

- Given:
 - Terrain as grid of height values (height map)
 - Point X in the grid (our "viewpoint", has a height, too)
 - Horizontal viewing direction (we can look up and down, but not to the left or right)
- Problem: find all visible points in the grid along the view direction
- Assumption: we have already extracted a vector of heights from the grid containing all cells' heights that are in our horizontal viewing

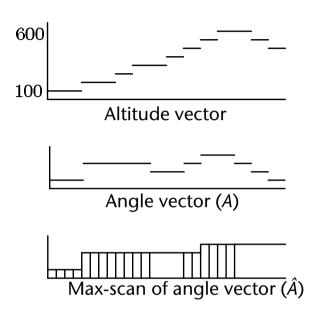
direction





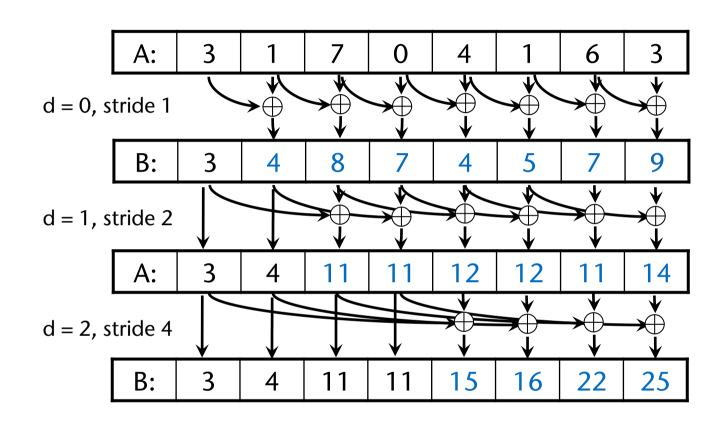
The algorithm:

- 1. Convert height vector to vertical angles (as seen from X) $\rightarrow A$
 - One thread per vector element
- 2. Perform max-scan on angle vector (i.e., prefix sum with the max operator) $\rightarrow \hat{A}$
- 3. Test $\hat{a}_i < a_i$, if true then grid point is visible form X



The Hillis-Steele Algorithm

Iterate log(n) times:



- Notes:
 - Blue = active threads
 - Each thread reads from "another" thread, too → must use double buffering and barrier synchronization

The algorithm as pseudo-code:

Note: we omitted the double-buffering and the barrier synchronization

Terminology

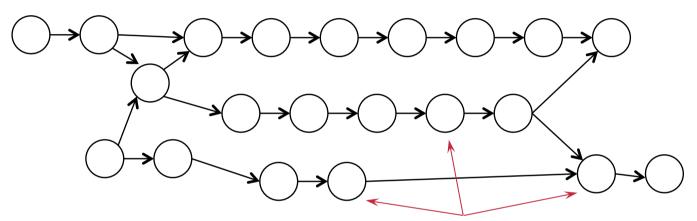
- Algorithmic technique: recursive/iterative doubling technique =
 "Accesses or actions are governed by increasing powers of 2"
 - Remember the algo for maintaining dynamic arrays? (2nd/1st semester)

Definitions:

- Depth $D(n) = "#iterations" = parallel running time <math>T_p(n)$
 - (Think of the loops unrolled and "baked" into a hardware pipeline)
 - Sometimes also called step complexity
- Work W(n) = total number of operations performed by all threads together
 - With sequential algorithms, work complexity = time complexity
- Work-efficient:

A parallel algorithm is called *work-efficient*, if it performs no more work than the sequential one

- Visual definition of depth/work complexity:
 - Express computation as a dependence graph of parallel tasks:



Parallel, independent tasks

- Work complexity = total amount of work performed by all tasks
- Depth complexity = length of the "critical path" in the graph
- Parallel algorithms should be always both work and depth efficient!

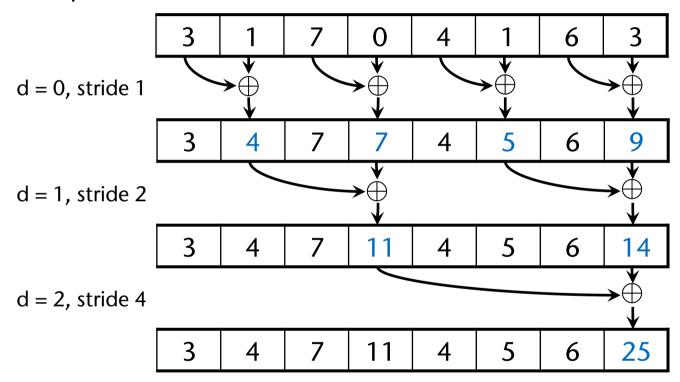
- Complexity of the Hillis-Steele algorithm:
 - Depth $d = T_p(n) = \#$ iterations = $\log(n) \rightarrow \gcd$
 - In iteration d: $n 2^{d-1}$ adds
 - Total number of adds = work complexity

$$W(n) = \sum_{d=1}^{\log_2 n} (n - 2^{d-1}) = \sum_{d=1}^{\log_2 n} n - \sum_{d=1}^{\log_2 n} 2^{d-1} = n \cdot \log n - n \in O(n \log n)$$

- Conclusion: not work-efficient
 - A factor of log(n) can hurt: 20x for 10^6 elements

The Blelloch Algorithm (for Exclusive Scan)

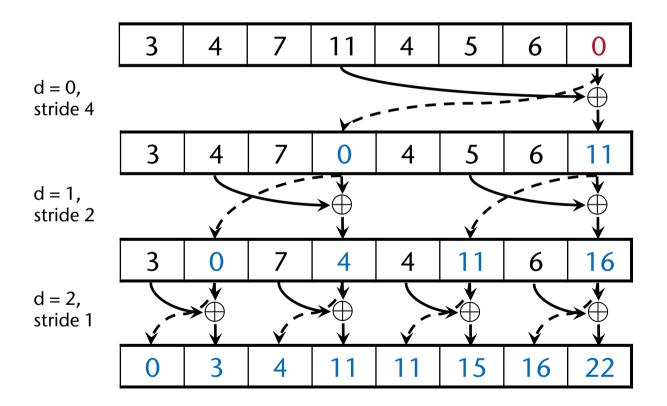
- Consists of two phases: up-sweep (= reduction) and down-sweep
- 1. Up-sweep:



Note: no double-buffering needed! (sync is still needed, of course)

2. Down-sweep:

First: zero last element (might seem strange at first thought)

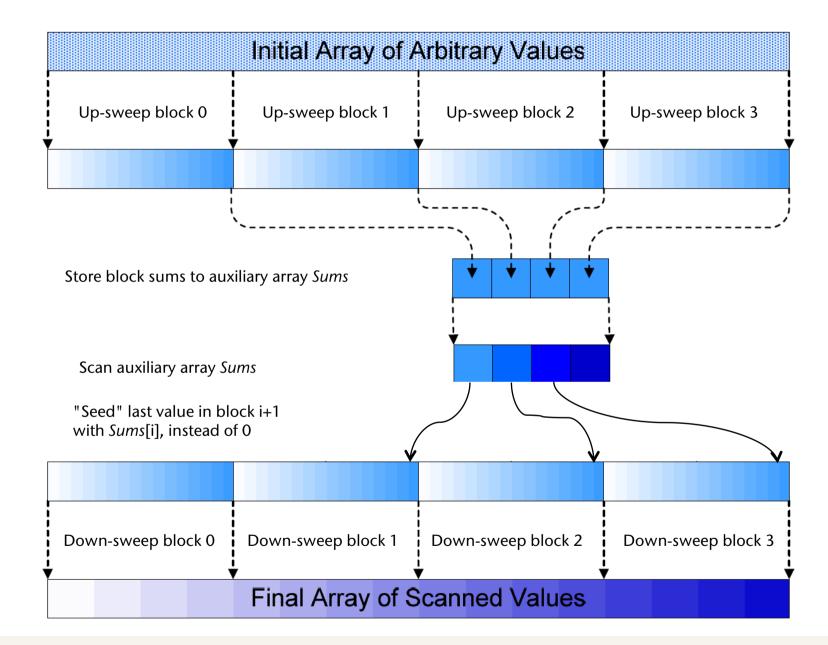


Dashed line means "store into" (overwriting previous content)

- Depth complexity:
 - Performs 2·log(n) iterations
 - $D(n) \in O(\log n)$
- Work-efficiency:
 - Number of adds: n/2 + n/4 + ... + 1 + 1 + ... + n/4 + n/2
 - Work complexity $W(n) = 2 \cdot n = O(n)$
 - The Blelloch algorithm is work efficient
- This up-sweep followed by down-sweep is a very common pattern in massively parallel algorithms!
- Limitations so far:
 - Only one block of threads (what if the array is larger?)
 - Only arrays with power-of-2 size

Working on Arbitrary Length Input

- One kernel launch handles up to 2*blockDim.x elements
- Partition array into blocks
 - Choose fairly small block size = 2^k , so we can easily pad array to $b \cdot 2^k$
- 1. Run up-sweep on each block
- 2. Each block writes the sum of its section (= last element after upsweep) into a *Sums* array at blockldx.x
- 3. Run prefix sum on the Sums array
- 4. Perform down-sweep on each block
- 5. Add Sums[blockldx.x] to each element in "next" array section blockldx.x+1



Further Optimizations

- A real implementation needs to do all the nitty-gritty optimizations
 - E.g., worry about bank conflicts (very technical, pretty complex)
- A simple & effective technique:
 - Each thread i loads 4 floats from global memory → float4 x
 - Store $\Sigma_{i=1...4} \times [i][j]$ in shared memory a[i]
 - Compute the prefix-sum on $\mathbf{a} \rightarrow \hat{\mathbf{a}}$
 - Store 4 values back in global memory:

```
-\hat{a}[i] + x[0]
-\hat{a}[i] + x[0] + x[1]
-\hat{a}[i] + x[0] + x[1] + x[2]
-\hat{a}[i] + x[0] + x[1] + x[2] + x[3]
```

- Experience shows: 2x faster
- Why does this improve performance? → Brent's theorem

Brent's Theorem

- Assumption when formulating parallel algorithms: we have arbitrarily many processors
 - E.g., O(n) many processors for input of size n
 - Kernel launch even reflects that!
 - Often, we run as many threads as there are input elements
 - I.e., CUDA/GPU provide us with this (nice) abstraction
- Real hardware: only has fixed number p of processors
 - E.g., on current GPUs: $p \approx 200-2000$ (depending on viewpoint)
- Question: how fast can an implementation of a massively parallel algorithm really be?

- Assumptions for Brent's theorem: PRAM model
 - No explicit synchronization needed
 - Memory access = free
- Brent's Theorem:

Given a massively parallel algorithm A; let D(n) = its depth (i.e., parallel time complexity), and W(n) = its work complexity. Then, A can be run on a p-processor PRAM in time

$$T(n,p) \leq \left\lfloor \frac{W(n)}{p} \right\rfloor + D(n)$$

(Note the "≤")

Proof:

- For each iteration step i, $1 \le i \le D(n)$, let $W_i(n) = \text{number of operations}$ in that step
- Distribute those operations on p processors:
 - Groups of $\left\lceil \frac{W_i(n)}{p} \right\rceil$ operations in parallel on the p processors
 - Takes $\left\lceil \frac{W_i(n)}{p} \right\rceil$ time steps on the PRAM
- Overall:

$$T(n,p) = \sum_{i=1}^{D(n)} \left\lceil \frac{W_i(n)}{p} \right\rceil \leq \sum_{i=1}^{D(n)} \left(\left\lfloor \frac{W_i(n)}{p} \right\rfloor + 1 \right) \leq \left\lfloor \frac{W(n)}{p} \right\rfloor + D(n)$$